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Abstract

CD36, a fatty acid scavenger receptor expressed in tumors, is associated with a poor
prognosis in several cancers. Our previous research demonstrated the involvement of CD36
in the proliferation and migration of oral squamous cell carcinoma (OSCC) cells. However,
the clinical significance of CD36 expression in OSCC remains unclear. The purpose of this
study was to evaluate the association between CD36 expression and the clinicopathological
characteristics of OSCC patients. Immunohistochemical expression of CD36 was quantified
using the H-score, and its association with clinicopathological characteristics was evaluated
in 55 OSCC patients. The mean H-score for membrane-associated CD36 expression was
84.8. CD36 expression was significantly correlated with tumor stage, mode of invasion,
differentiation, and recurrence of OSCC cells. Moreover, elevated CD36 expression was
significantly correlated with a high rate of relapse. Univariate and multivariate analyses
showed that CD36 expression was an independent risk factor for relapse. Moreover,
The Cancer Genome Atlas (TCGA) dataset analysis revealed that CD36 expression may
coexist with transcriptional activation of β-oxidation-related and epithelial–mesenchymal
transition (EMT)-related pathways. These findings suggest that CD36 might serve as a
predictive biomarker for OSCC malignancy and recurrence.

Keywords: CD36; oral squamous cell carcinoma; recurrence

1. Introduction
Oral cancer, categorized as a type of head and neck cancer, ranks as the sixteenth

most common malignancy worldwide [1]. Over 90% of oral cancers are squamous cell
carcinomas [2]. Recent advancements in novel treatment strategies, such as molecular
targeted therapy and immunotherapy, have shown significant promise in oral cancer
treatment [3]. However, their clinical efficacy remains unsatisfactory in some patients
because of drug resistance or acquired tolerance; therefore, the identification of alternative
targetable molecules and the development of new treatment strategies are imperative.

CD36, a fatty acid membrane-associated receptor of approximately 80 kDa, binds to lig-
ands such as fatty acids and lipoproteins [4]. CD36 is abundantly expressed in adipocytes,
hepatocytes, and macrophages and is strongly associated with fat metabolism, taste percep-
tion, and the development of metabolic diseases such as diabetes and obesity [4]. Moreover,
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recent studies have revealed that the expression of CD36 in tumor cells may correlate with
treatment outcomes and prognosis in various tumor types, including esophageal squamous
cell carcinoma, lung squamous cell carcinoma, bladder cancer, luminal A breast cancer, and
glioblastoma [5–8], suggesting that this molecule contributes to tumor progression.

Our previous study demonstrated that CD36 plays a role in the proliferation and
migration of oral squamous cell carcinoma (OSCC), suggesting its potential as a novel
therapeutic target for oral cancer [9]. However, the correlation between CD36 expression
and the clinicopathological characteristics of OSCC remains unclear. Therefore, this study
aimed to evaluate the association between CD36 expression and the clinicopathological
characteristics of OSCC. Moreover, CD36 has been reported to be biologically associated
with β-oxidation and epithelial–mesenchymal transition (EMT) [10,11]. Hence, we aimed
to elucidate correlation with CD36 expression and genes related to fatty acid β-oxidation
(PPARA, ACADL, TXNIP) and EMT (ZEB1, ARG1) using The Cancer Genome Atlas (TCGA)
dataset analysis.

2. Results
2.1. Patients and Characteristics

The clinicopathological characteristics of patients are presented in Table 1. Of the
55 patients, 26 were male and 29 were female, with a median age of 73.0 years (range,
31–92 years). The median follow-up time for survivors was 22.0 months (7–152 months).

Table 1. Correlation between CD36 expression and clinicopathological characteristics in patients with
OSCC.

N (%) Median (Interquartile
Range) p-Values

Age, years 0.45
<72 27 (49%) 97.4 (3.5–165.8)
>72 28 (51%) 66.7 (1.3–156.0)
Sex 0.21

Male 26 (47%) 104.7 (1.3–165.8)
Female 29 (53%) 64.7 (4.2–156.0)

BMI 0.37
<21.7 27 (49%) 64.9 (4.2–165.8)
>21.7 28 (51%) 98.0 (1.3–155.3)

Primary site 0.0011
Tongue 32 (58%) 108.7 (5.9–165.8)

Mandibular gingiva 10 (18%) 12.2 (1.3–148.9)
Maxillary gingiva 9 (16%) 63.3 (35.3–79.5)

Floor of mouth 2 (4%) 155.7 (155.3–156.0)
Buccal mucosa 1 (2%) 129.2

Lip 1 (2%) 54.4
Tumor stage 0.026

I 22 (40%) 54.2 (1.3–145.4)
II 17 (31%) 98.5 (42.7–155.3)
III 8 (15%) 65.2 (4.2–140.1)
IV 8 (15%) 118.6 (64.7–165.8)

T factor 0.065
T1 22 (40%) 54.2 (1.3–145.4)
T2 21 (38%) 98.5 (4.2–155.3)
T3 6 (11%) 89.6 (53.9–138.6)
T4 6 (11%) 103.1 (64.7–165.8)
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Table 1. Cont.

N (%) Median (Interquartile
Range) p-Values

N factor 0.25
N0 44 (80%) 74.0 (1.3–156.0)

N1–3 11 (20%) 125.7 (4.2–165.8)
Differentiation 0.013

Well 25 (45%) 64.7 (1.3–145.4)
Moderate 21 (38%) 74.1 (3.5–156.0)

Poorly 9 (16%) 125.7 (61.6–165.8)
Mode of invasion 0.0034

1 3 (5%) 58.7 (52.5–127.9)
2 16 (29%) 53.9 (1.3–145.4)
3 21 (38%) 79.5 (3.5–156.0)

4C/4D 15 (27%) 125.7 (60.3–165.8)
Lymphovascular invasion 0.13

Absent 47 (85%) 68.7 (1.3–165.8)
Present 8 (15%) 104.5 (66.1–145.6)

Perineural invasion 0.15
Absent 52 (95%) 74.0 (1.3–165.8)
Present 3 (5%) 121.7 (110.5–145.6)

Recurrence 0.0004
Absent 29 (53%) 58.7 (1.3–140.1)
Present 26 (47%) 125.7 (4.2–165.8)

The primary sites included the tongue (n = 32, 58%), mandibular gingiva (n = 10,
18%), maxillary gingiva (n = 9, 16%), floor of the mouth (n = 2, 4%), buccal mucosa (n = 1,
2%), and lips (n = 1, 2%). Based on the Union for International Cancer Control (UICC)
TNM classification criteria for oral cavity cancer, 8th edition [12], 22 (40%) patients were
diagnosed with stage I, 17 (30%) with stage II, 8 (15%) with stage III, and 8 (15%) with
stage IV. Histopathologically, OSCCs were classified as well differentiated (n = 26, 47%),
moderately differentiated (n = 20, 36%), or poorly differentiated (n = 9, 16%), based on
the World Health Organization classification [13]. The mode of invasion at the invasive
front of the tumor was classified based on the criteria of Yamamoto et al. as grade 1 (n = 3,
5%), grade 2 (n = 16, 29%), grade 3 (n = 21, 38%), and grade 4C/4D (n = 15, 27%) [14].
Lymphovascular invasion was observed in 8 (15%), and perineural invasion in 3 (5%).
Representative membrane-associated CD36 and H-E-stained photographs of the mode of
invasion classification are shown in Figure 1. The mean H-scores for CD36 expression were
84.8 ± 46.9.

2.2. Correlations Between CD36 Expression and the Clinicopathological Characteristics of Patients
with OSCC

The results from the analysis of the correlations between CD36 expression and the
clinicopathological characteristics of patients with OSCC are presented in Table 1. High
CD36 expression was significantly associated with the primary site (p = 0.0011), tumor
stage (p = 0.026), differentiation (p = 0.013), mode of invasion (p = 0.0034), and recurrence
(p = 0.0004).
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Figure 1. Immunohistochemical investigation between the mode of invasion and CD36 expression in
OSCC (H&E staining, immunohistochemical CD36 staining) (A,B) Grade 3, tongue cancer, H-score:
77.0. (C,D) Grade 4C, tongue cancer, H-score: 125.6. (E,F) Grade 4D, tongue cancer, H-score: 135.2.
Magnification ×400, scale bar: 200 µm.

2.3. Correlation Between CD36 Expression and Survival in Patients with OSCC After Treatment

The patient population was divided into two groups based on the median H-score
(79.5) and analyzed according to CD36 expression, respectively. Overall survival (OS) rates
showed no significant difference (p = 0.42, Figure 2). However, relapse-free survival (DFS)
rates were significantly lower in patients with high CD36 expression than in those with low
CD36 expression (p = 0.0002, Figure 3). Univariate analysis identified several significant
prognostic factors for poor overall survival, including the T factor (p = 0.018), N factor
(p = 0.048), tumor stage (p = 0.028), and mode of invasion (p = 0.04) (Table 2). CD36
expression was not relevant to overall survival. For relapse, significant prognostic factors
included the T factor (p = 0.0014), N factor (p = 0.017), tumor stage (p = 0.016), mode of
invasion (p < 0.0001), and CD36 expression (p = 0.0008) (Table 3). Moreover, multivariate
analysis showed that the mode of invasion (p = 0.04, HR = 10.02, 95%CI = 1.48–197.7)
was an independent risk factor for poor overall survival, whereas the mode of invasion
(p = 0.04, HR = 2.62, 95%CI = 1.07–6.86) and CD36 expression (p = 0.036, HR = 3.29,
95%CI = 1.14–10.93) were independent risk factors for relapse (Tables 2 and 3).
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Figure 2. Overall survival rate of patients with OSCC according to CD36 expression (p = 0.42). Overall
survival rates showed no significant difference. The x-axis represents time (months), and the y-axis
represents overall survival (%). ns: not significant.

✱✱

Figure 3. Relapse-free survival rate of patients with OSCC according to CD36 expression (p = 0.0002).
Relapse-free survival rates were significantly lower in patients with high CD36 expression than in
those with low CD36 expression. The x-axis represents time (months), and the y-axis represents
relapse-free survival (%). **: p < 0.01.
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Table 2. Results of univariate and multivariate analyses of clinicopathological factors affecting overall
survival rates following surgery.

Characteristics Univariate Analysis Multivariate Analysis

HR 95%CI p Value HR 95%CI p value

Age (years)
<72 versus >72 0.84 0.16 ~ 3.85 0.82

Sex
Female versus male 1.53 0.34 ~ 7.76 0.58

BMI
<21.7 versus >21.7 1.18 0.25 ~ 6.03 0.83

T factor
T1–2 versus T3–4 6.12 1.34 ~ 31.27 0.018 1.29 0.14 ~ 27.59 0.83

N factor
Absent versus present 4.58 0.99 ~ 23.5 0.048 0.27 0.0082 ~ 8.27 0.4

Tumor stage
I-II versus III-IV 6.31 1.35 ~ 44.13 0.028 19.99 0.24 ~ 1728 0.16
Differentiation

Well versus moderate–poorly 2.06 0.44 ~ 14.46 0.39
Mode of invasion
1–3 versus 4C/4D 5.78 1.18 ~ 41.37 0.04 10.02 1.48 ~ 197.7 0.04

Lymphovascular invasion
Absent versus present 0.96 0.051 ~ 5.63 0.97

Perineural invasion
Absent versus present 1.3 × 10−11 - >0.99

CD36 expression
Low versus high 1.93 0.37 ~ 13.94 0.45

Recurrence
Absent versus present 2.5 × 10−12 3.88 ~ NE >0.99

HR hazard risk, CI confidence interval, NE not estimable due to model instability caused by sparse events.

Table 3. Results of univariate and multivariate analyses of clinicopathological factors affecting
relapse-free survival rates following surgery.

Characteristics Univariate Analysis Multivariate Analysis

HR 95%CI p Value HR 95%CI p Value

Age (years)
<72 versus >72 0.92 0.041 ~ 2.00 0.83

Sex
Female versus male 0.73 0.33 ~ 1.59 0.44

BMI
<21.7 versus >21.7 1.75 0.8 ~ 3.99 0.17

T factor
T1–2 versus T3–4 4.009 1.65 ~ 9.27 0.0014 2.47 0.54 ~ 17.75 0.29

N factor
Absent versus present 2.7 1.15 ~ 5.96 0.017 0.59 0.11 ~ 4.62 0.56

Tumor stage
I-II versus III-IV 2.62 1.17 ~ 5.71 0.016 2.1 0.15 ~ 20.17 0.54
Differentiation

Well versus moderate–poorly 1.57 0.72 ~ 3.52 0.26
Mode of invasion
1–3 versus 4C/4D 4.94 2.26 ~ 10.97 <0.0001 2.62 1.07 ~ 6.86 0.04

Lymphovascular invasion
Absent versus present 2.33 0.9 ~ 5.34 0.058

Perineural invasion
Absent versus present 0.55 0.031 ~ 2.59 0.56

CD36 expression
Low versus high 4.85 2.05 ~ 13.34 0.0008 3.29 1.14 ~ 10.93 0.036

HR hazard risk, CI confidence interval.
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2.4. Correlation Between CD36 Expression and Related Molecular Profiles in Head and Neck
Cancer from the TCGA Datasets

To further explore the molecular context of CD36, we analyzed RNA-seq data from
288 patients with head and neck cancer in TCGA Head and Neck Squamous Cell Carcinoma
(HNSC) cohort. Genes related to fatty acid β-oxidation (PPARA, ACADL, TXNIP) and EMT
(ZEB1, ARG1) were selected a priori because β-oxidation and EMT have been reported to
be biologically associated with CD36 [10,15–20].

Spearman’s rank correlation analysis revealed modest but statistically significant
positive associations between CD36 and several genes: ACADL (ρ = 0.29, p < 0.0001), ARG1
(ρ = 0.41, p < 0.0001), ZEB1 (ρ = 0.32, p < 0.0001), PPARA (ρ = 0.29, p < 0.0001), and TXNIP
(ρ = 0.26, p < 0.0001) (Figures 4 and 5).

These results suggest that CD36 expression may coexist with transcriptional activation
of β-oxidation-related and EMT-related pathways, although the correlations were modest
and do not imply causation.

Figure 4. Heatmap showing the correlations between CD36 and selected genes of interest (not
filtered by significance) in samples from the TCGA-HNSC dataset (n = 288). The numbers inside
the cells of the heatmap represent correlation coefficients. The color key on the right shows the
range of Spearman’s rank correlation coefficients (ρ), with red indicating values close to 1 (positive
correlations) and blue indicating values close to −1 (negative correlations). Correlation was calculated
using Spearman’s rank correlation test.
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Figure 5. Spearman’s rank correlations between CD36 and selected genes (PPARA, ACADL, TXNIP,
ZEB1, and ARG1) in samples from the TCGA-HNSC dataset (n = 288). Each dot represents one sample.
LOESS (locally weighted regression) curves with 95% confidence intervals are shown to visualize
overall trends without assuming linearity. Correlation strength and p-values were determined using
Spearman’s rank correlation coefficient (ρ).

3. Discussion
CD36 has been shown to play a significant role in various pro-tumor functions, includ-

ing the regulation of proliferation, metastasis, resistance to chemotherapy or radiotherapy,
and angiogenesis [21,22]. Moreover, recent clinical studies have shown a correlation be-
tween high CD36 expression and a poor prognosis in several cancers, including esophageal
squamous cell carcinoma, gastric cancer, lung squamous cell carcinoma, bladder cancer,
luminal A breast cancer, glioblastoma, and acute myeloid leukemia [5–8,21,23]. However,
the correlation between CD36 expression and the clinicopathological characteristics of oral
cancer remains unclear. The purpose of this study was to examine the clinicopathological
role of CD36 in OSCC. Consequently, high CD36 expression was significantly correlated
with high malignancy in oral cancer.
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Our previous study highlighted the biological activity of CD36, including its involve-
ment in the proliferation and migration of OSCC cells [9]. More recently, we demonstrated
that selective inhibition of CD36 can induce antitumor immunomodulatory effects in a
mouse model of oral cancer [24]. Furthermore, the regulatory function of CD36 in EMT
has been demonstrated in hepatocellular carcinoma and cervical cancer cells [11,20]. Taken
together, in OSCC, CD36 is correlated to high malignancy and may be associated with EMT
and become a potential diagnostic biomarker or therapeutic target.

In this clinicopathological study, high levels of CD36 immunohistochemical expression
were significantly associated with poor histological differentiation and high-grade 4C/4D
mode of invasion. Moreover, patients with high levels of CD36 expression showed a high rate
of recurrence. Multivariate analysis revealed high CD36 expression and high-grade 4C/4D
mode of invasion as a significant prognostic factor for relapse. A significant difference in
relapse-free survival was observed, but not in overall survival. This may be explained by the
fact that most patients had early-stage cancer, few patients relapsed and subsequently died
after additional treatment, and the follow-up period was relatively short.

The possible mechanism by which CD36 affects recurrence is the cancellation of
dormancy for cancer cells due to oxidative stress. Increased fatty acid storage due to high
CD36 expression promotes β-oxidation, which results in increased reactive oxygen species
(ROS) and oxidative stress [25]. Oxidative stress is a candidate factor for recurrence of
dormant cancer cells [26]. High expression of CD36 may be indicator of recurrence in OSCC.
For instance, in papillary thyroid cancer, high expression of CD36 on macrophages increases
the recurrence rate [27]. It has also been reported that high expression of CD36 contributes
to an increased recurrence rate in pancreatic ductal adenocarcinoma and acute myeloid
leukemia [23,28]. On the other hand, in this study, high-grade 4C/4D mode of invasion
was also associated with recurrence. Previous studies have shown that the high-grade
4C/4D mode of tumor invasion is associated with high malignancy and metastasis [14,29].
Phenotypic alterations like cell scattering occur via EMT; therefore, the mode of invasion
may be related to EMT [30].

Through EMT, epithelial markers such as E-cadherin are downregulated, while mes-
enchymal markers and cellular motility are enhanced, leading to increased local invasion
and changes in the pattern of infiltration, such as cord-like or diffuse invasion corre-
sponding to grade 4C/4D mode of invasion [31,32]. These features are considered factors
contributing to an increased risk of local recurrence or metastasis after surgical resection.
However, EMT and histological dedifferentiation are distinct concepts. This is consistent
with the results of the multivariate analysis of this study.

To further understand the molecular context of CD36, we performed correlation analyses
using TCGA data. Interestingly, this analysis revealed that PPARA, ACADL, TXNIP, ZEB1, and
ARG1 showed a significant positive correlation with CD36 expression. PPARA and ACADL
are related to β-oxidation [15,16]. TXNIP is involved in the production of ROS [17]. These
molecules are significantly correlated with CD36, and high expression of CD36 may increase
β-oxidation and ROS production, which may contribute to the recurrence of dormant cancer
cells. Moreover, amplification of ZEB1 or ARG1 is relevant to EMT or metastasis [18,19].
Correlation analysis suggests that EMT-related molecules such as ZEB1 and ARG1 may be
co-expressed with CD36. These findings indicate that high CD36 expression is associated with
EMT. Additionally, high CD36 expression may be correlated to poor histological differentiation
and an aggressive invasion pattern (grade 4C/4D mode of invasion). Further studies are
required to clarify the underlying causal mechanisms.

This study has several limitations. First, the sample size was relatively small and
restricted to surgically resectable cases, which may limit the generalizability of the findings.
Second, the TCGA analysis was based solely on mRNA expression and did not include
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protein-level validation. Although CD36 expression showed positive correlations with EMT-
related genes such as ZEB1 and ARG1, these results only indicate possible transcriptional
co-expression and do not establish a causal relationship. Therefore, functional studies are
required to clarify whether CD36 directly regulates EMT or invasion pathways in OSCC.

In conclusion, our results demonstrated that CD36 is associated with OSCC malig-
nancy and may serve as a novel diagnostic biomarker. However, no association with overall
survival was observed, suggesting that CD36 may have limited significance as a prognostic
predictor. The possibility that CD36 expression is involved in the mechanism of recurrence
is clinically important and provides evidence that will serve as a basis for future functional
studies and consideration as a therapeutic target.

4. Materials and Methods
4.1. Patients

This study included 55 patients who underwent surgical treatment for OSCC at the
Department of Oral and Maxillofacial Surgery, University of Toyama Hospital, between
April 2009 and March 2024. The inclusion criterion was a cytological or histopathological
diagnosis of OSCC, and inclusion was also limited by sample availability. No predefined
exclusion criteria were applied. Nevertheless, none of the tissue specimens showed positive
surgical margins, and no patients in our cohort had received preoperative chemotherapy or
radiotherapy or had immunosuppression or other conditions likely to substantially affect
survival or molecular profiles. Medical records were retrospectively examined for age,
sex, body mass index (BMI), primary site, tumor stage, T factor, N factor, differentiation,
mode of invasion, lymphovascular invasion, perineural invasion and recurrence. The
tumor extent and the histopathological grading were classified based on the UICC TNM
classification criteria for oral cavity cancer, 8th edition [12]. The mode of invasion at the
invasive front of the tumor was classified according to Yamamoto et al. [14]. This study was
conducted in accordance with the ethical guidelines outlined in the Declaration of Helsinki
and was approved by Research Ethics Committee for Clinical and Epidemiological Research
of Toyama University (Approval No. R2018168; Approval Date 19 April 2019). Owing to
the retrospective, observational nature of this study, informed consent was obtained using
an opt-in/opt-out approach.

4.2. Immunohistochemistry

Immunohistochemical analysis of paraffin-embedded samples was performed. The
thickness of the sections was 4 µm. For antigen retrieval, the sections were immersed
in citric acid buffer (pH 6.0) and heated at 121 ◦C for 10 min. The deparaffinized and
rehydrated sections were immersed in 0.3% hydrogen peroxide in methanol for 10 min to
block endogenous peroxidase activity. To prevent nonspecific binding of the antibodies,
the sections were immersed in a blocking solution (Nacalai Tesque, Kyoto, Japan) for
15 min. Subsequently, the sections were incubated with the primary antibody (anti-CD36
rabbit monoclonal antibody, 1:100; clone EPR6573; Abcam, Cambridge, UK) overnight at
4 ◦C. After incubation, the sections were immersed in phosphoric acid thrice for 3 min.
Peroxidase reactions were developed using a 3,3’-diaminobenzidine tetrahydrochloride
substrate solution (DAKO, Glostrup, Denmark), and the sections were counterstained with
hematoxylin. The same primary antibody was used as a positive control.

4.3. Quantification of CD36 Expression with Immunoreactivity Scoring

CD36 expression was quantified based on H-score [33]. Immunohistochemically
stained specimens were captured to create virtual slides, and immunoreactivity was ana-
lyzed using Aperio analysis software (Leica Biosystems, Tokyo, Japan) at ×20 magnification
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with objective lens. Expression intensity was categorized into four stages: no expression,
0; weak, 1+; moderate, 2+; and strong, 3+. The distribution of expression was presented
as a percentage of the number of cells (numerator) relative to the total number of cells in
the analysis area (denominator). The H-score was calculated using the following formula:
H-score (100−300) = (% staining area of “1+”) × 1 + (% staining area of “2+”) × 2 + (%
staining area of “3+”) × 3.

4.4. Statistical Analysis

Comparisons were made using the Mann–Whitney U test or Kruskal–Wallis test for
continuous variables and the chi-square test or Fisher’s exact test for categorical variables.
Correlations were analyzed using Spearman’s rank correlation. Survival curves were
generated using the Kaplan–Meier method, and differences between overall survival
curves were evaluated using the log-rank test. Univariate and multivariate analyses
were performed using Cox’s proportional hazards model. Differences were considered
statistically significant at p < 0.05. All statistical analyses were performed using GraphPad
Prism software v.9 (GraphPad Software, Boston, MA, USA).

4.5. Acquisition and Analysis of TCGA Data

A total of 288 RNA-seq data from the TCGA-HNSC cohort were obtained via the
Genomic Data Commons (GDC) portal [34]. TCGA data were accessed on October 14, 2025.
As a breakdown, oral cavity, oropharyngeal, laryngeal/hypopharyngeal and unknown sam-
ples included 172, 16, 59, and 41 cases, respectively. Gene-level expression (STAR-counts
workflow) was normalized, log2-transformed, and analyzed using R software. Spearman’s
rank correlation coefficients (ρ) were calculated to assess monotonic relationships between
CD36 and candidate genes related to fatty acid β-oxidation (PPARA, ACADL, TXNIP) or
EMT/metastasis (ZEB1, ARG1). Scatter plots were visualized using LOESS smoothing with
95% confidence intervals to illustrate overall expression trends.
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